# 164. The Crystal Structure of Strontium Azide. 

By F. J. Llewellyn and F. E. Whitmore.


#### Abstract

The structure of strontium azide has been completely. determined by means of three-dimensional Fourier sections and lines using all the $\{h k l\}$ structure amplitudes obtainable with $\mathrm{Cu}-K \alpha X$-radiation. The structure is ionic, each strontium ion being surrounded by 8 azide ions, arranged in two sets, at distances 2.63 and 2.77 A., severally. The azide ion is linear and symmetrical, the nitrogen-nitrogen separation being 1.12 A .


The azide grouping ( $\mathrm{N}_{3}$ ) has been shown by $X$-ray and electron-diffraction studies to be linear in both electrovalent and covalent substances. In the former, typified by sodium and ammonium azides (Frevel, J. Amer. Chem. Soc., 1936, 58, 779; Z. Krist., 1936, 94, A, 197) the two nitrogen-nitrogen separations in the azide ion are equal; the ion resonates between the three structures (a), (b), and (c),
(a) $\overline{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=\overline{\mathrm{N}}$
(b) $\mathrm{N}^{2-}-\stackrel{+}{\mathrm{N}} \equiv \mathrm{N}$
(c) $\mathrm{N} \equiv \stackrel{+}{\mathrm{N}}-\mathrm{N}^{2}$
each of which is equally important, and stabilisation is effected by the considerable resonance energy; the nitrogen-nitrogen separation is $1 \cdot 15 \mathrm{~A}$. In the latter case, typified
$\mathrm{R}-\mathrm{N}-\mathrm{N}-\mathrm{N}$
1.26 1.11
(I.) by cyanuric triazide (Knaggs, Proc. Roy. Soc., 1935, 150, A, 576), these two nitrogen-nitrogen bonds are not equivalent and the azide grouping has the dimensions shown in (I).
The three most probable resonance forms for the covalently linked azide group are (d), (e), and $(f)$ :
(d)

(e)

(f) R

the last probably does not contribute to any appreciable extent, for it involves adjacent positive charges which render this form more unstable. Resonance therefore occurs between (d) and (e), leading to an unsymmetrical grouping of lower stability than the azide ion.

The stability of metallic azides to heat, friction, and impact varies considerably and is determined, at least in part, by the bonding between the metal and the azide group. Thus, the alkali-metal azides, which are ionic, are stable both to friction and to impact and are only decomposed gently by heat at $300-400^{\circ}$. The alkaline-earth azides are decomposed more violently by heat at a lower temperature (ca. $110-160^{\circ}$ ) but remain insensitive to friction and impact. On the other hand, azides of the heavier metals, e.g., lead, and those of many of the B-sub-group elements, e.g., copper and silver, decompose sometimes with explosive violence when lightly struck or rubbed.

Between these two extremes there is a large number of azides of intermediate properties in which it'may be assumed that the linkage of the azide group is more or less covalent. The following investigation of the structure of strontium azide is the first of a series in which it is hoped to trace the development of covalent bonding with increasing instability.

Preliminary Crystallographic Data.-Small, well-defined, orthorhombic, bipyramidal (pseudo-tetragonal) crystals of strontium azide exhibiting the form $\{111\}$ were obtained by slowly evaporating the aqueous solution to dryness in an Erlenmeyer flask. Single-crystal rotation photographs using $\mathrm{Cu}-\mathrm{K} \mathrm{\alpha} \quad X$-radiation gave the cell dimensions: $[a]=11 \cdot 82$, $[b]=11.47,[c]=6.08 \mathrm{~A}$. Oscillation photographs about the three principal axes revealed the halvings $\{h k l\}$ absent when $h+k \neq 2 n, k+l \neq 2 n, h+l \neq 2 n ;\{0 k l\}$ absent when $k \neq 2 n$, $l \neq 2 n, k+l \neq 4 n ;\{h 0 l\}$ absent when $h \neq 2 n, l \neq 2 n, h+l \neq 4 n$; and $\{h k 0\}$ absent when $h \neq 2 n, k \neq 2 n, h+k \neq 4 n$. The space-group is therefore $F_{d d d}$. The observed density is 2.73 g ./c.c.; calculated for eight molecules in the unit cell, $2 \cdot 77 \mathrm{~g}$./c.c.

The space-group $F_{d d d}$ accommodates 32 general positions, five sets of 16 -fold special positions, and two sets of 8 -fold special positions. Since there are 8 strontium ions in the unit cell, these must be located in one of the sets of 8 -fold special positions, and because the choice between these is arbitrary, the co-ordinates may be written down as (000), ( $0 \frac{1}{2} \frac{1}{2}$ ), ( $\left.\frac{1}{2} 0 \frac{1}{2}\right)$, ( $\left.\frac{1}{2} \frac{1}{2} 0\right)$, ( $14 \frac{1}{4}$ ),


The azide grouping can conveniently be dealt with in two parts: (a) the central nitrogen atoms, of which there are 16 , must lie in one of the 16 -fold special positions; and (b) the end nitrogen atoms, of which there are 32 located in the general positions, or in two sets of $\mathbf{1 6}$-fold positions.
(a) The five sets of 16 -fold positions can be classified into two kinds; the first is centro3 m
symmetrical, and the second possesses two-fold axial symmetry. Thus, whatever the actual position of the azide group, it must possess either a centre of symmetry or a two-fold axis.

Measurement of Intensities.-The intensities of the diffracted beams from all the planes $\{h k l\}$ observed by using $\mathrm{Cu}-\mathrm{K} \alpha X$-radiation were obtained by visual estimation using a simple comparator on which a numbęr of photographic spots produced by beams of known intensity had previously been recorded. From these intensities a set of structure amplitudes, on an arbitrary scale, can be obtained by using the relation $F=k \sqrt{\overline{I D P / L}}$, the symbols of which are defined in an earlier paper (this vol., p. 838).

Usually it is convenient to render a set of relative structure amplitudes absolute by comparing directly a number of diffracted beams with some standard beam-normally the 400 reflection from the ground cleavage face of rock-salt. In this particular case we did not consider this to be necessary since the phases of nearly all the structure amplitudes could be deduced from the known position of the strontium atoms. When the structure was completed, the experimental structure amplitudes were made absolute by multiplying by the factor $F_{\text {calc. }} / F_{\text {ohs. }}$. The table includes a list of the experimental structure amplitudes and also the calculated phases and structure amplitudes.

| $h k l$. | $F_{\text {calc. }}$. | $F_{\text {oba. }}$. | $k k l$. | $F_{\text {oallo. }}$. | $F_{\text {obs. }}$. | hkl. | $F_{\text {cala }}$. | $F_{\text {oba. }}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 004 | 123 | 169 | 335 | 45 | 93 | 711 | 37 | 99 |
| 022 | 278 | 250 | 351 | 62 | 124 | 713 | 86 | 112 |
| 026 | 273 | 184 | 353 | 140 | 167 | 715 | 39 | 69 |
| 040 | 347 | 268 | 355 | 141 | 122 | 731 | 12 | 66 |
| 044 | 224 | 188 | 371 | 117 | 133 | 733 | 98 | 104 |
| 062 | 296 | 239 | 373 | 121 | 143 | 735 | 16 | 95 |
| 066 | 140 | 118 | 375 | 60 | 84 | 751 | 128 | 108 |
| 080 | 99 | 161 | 391 | 69 | 120 | 753 | 35 | 55 |
| 084 | 311 | 195 | 393 | 123 | 114 | 755 | 0 | 37 |
| 0, 10, 2 | 246 | 186 | 395 | 36 | 65 | 771 | 50 | 99 |
| 0, 12, 0 | 157 | 173 | 3, 11, 1 | 43 | 83 | 773 | 48 | 57 |
| 111 | 62 | 114 | 3, 11, 3 | 118 | 85 | 791 | 67 | 81 |
| 113 | 118 | 152 | 3, 13, 1 | 120 | 95 | 793 | 33 | 49 |
| 115 | 65 | 97 | 400 | -71 | <20 | 7, 11, 1 | 96 | 116 |
| 117 | 65 | 58 | 404 | 217 | 177 | 800 | 417 | 309 |
| 131 | 55 | 58 | 422 | 156 | 160 | 804 | 107 | 116 |
| 133 | 109 | 142 | 426 | 22 | 81 | 822 | 211 | 179 |
| 135 | 93 | 119 | 440 | 100 | 148 | 840 | 260 | 188 |
| 151 | 128 | 175 | 444 | 103 | 107 | 842 | 192 | 124 |
| 153 | 28 | 73 | 462 | 73 | 114 | 862 | 238 | 172 |
| 155 | 4 | 62 | 480 | 233 | 199 | 880 | 88 | 142 |
| 171 | 120 | 138 | 484 | -22 | 56 | 8, 10, 2 | 216 | 144 |
| 173 | 83 | 79 | 4, 10, 2 | 48 | 98 | 911 | 16 | 91 |
| 175 | 25 | 81 | 4, 12, 0 | 115 | 88 | 913 | 97 | 95 |
| 191 | 79 | 118 | 511 | 193 | 168 | 915 | 34 | 73 |
| 193 | 46 | 76 | 513 | 76 | 113 | 931 | 10 | 67 |
| 195 | 47 | 73 | 515 | 110 | 115 | 933 | 76 | 82 |
| 1, 11, 1 | 92 | 118 | 531 | 199 | 191 | 935 | 56 | 85 |
| 1, 11, 3 | 70 | 63 | 533 | 107 | 110 | 951 | 72 | 102 |
| 1, 13, 1 | 10 | 46 | 535 | 69 | 83 | 953 | 19 | 48 |
| 202 | 233 | 208 | 551 | 89 | 98 | 971 | 63 | 95 |
| 206 | 155 | 144 | 553 | 142 | 140 | 973 | -21 | 134 |
| 220 | 285 | 250 | 555 | 127 | 111 | 991 | 70 | 86 |
| 222 | 124 | 100 | 571 | 99 | 112 | 10, 0, 2 | 172 | 151 |
| 224 | 132 | 184 | 573 | 143 | 123 | 10, 2, 0 | 247 | 152 |
| 242 | 211 | 188 | 575 | 78 | 64 | 10, 2, 4 | 130 | 113 |
| 246 | 143 | 127 | 591 | 73 | 106 | 10, 4, 2 | 180 | 115 |
| 260 | 195 | 191 | 593 | 143 | 94 | 10, 6, 0 | 142 | 148 |
| 262 | 130 | 59 | 5, 11, 1 | 87 | 80 | 10, 8, 2 | 133 | 123 |
| 264 | 168 | 150 | 602 | 183 | 184 | 11, 1, 1 | 73 | 114 |
| 282 | 174 | 173 | 606 | 89 | 138 | 11, 1, 3 | 72 | 73 |
| 2, 10, 0 | 144 | 165 | 620 | 134 | 248 | 11, 3, 1 | 134 | 113 |
| 2, 10, 4 | 148 | 109 | 622 | -101 | 60 | 11, 3, 3 | 53 | 64 |
| 2, 12, 2 | 140 | 110 | 624 | 161 | 146 | 11, 5, 1 | 127 | 71 |
| 311 | 164 | 228 | 642 | 156 | 150 | 11, 7, 1 | 94 | 97 |
| 313 | 86 | 124 | 646 | 113 | 127 | 12, 0, 0 | -14 | 44 |
| 315 | 114 | 219 | 660 | 176 | 177 | 12, 2, 2 | 66 | 107 |
| 317 | 115 | 120 | 682 | 118 | 150 | 12, 4, 0 | 87 | 97 |
| 331 | 214 | 232 | 6, 10, 0 | 153 | 152 | 13, 1, 1 | 132 | 96 |
| 333 | 76 | 121 | 6, 10, 2 | 153 | 152 | 13, 3, 1 | 120 | 94 |

Determination of the Structure.-The strontium atoms located at (000), etc., will be in phase and contribute to all the observed ( $h k 0$ ), ( $h 0 l$ ), and $0 k l$ ) planes. Since the contributions of the
strontium atoms will in general be greater than that of the nitrogens, as a first approximation, the phase of these planes was taken as $0^{\circ}$, or, in other words, these structure amplitudes are positive. A Fourier projection on the $c$-plane using all the $h k 0$ structure amplitudes was therefore computed in order to determine the approximate co-ordinates of the atoms of the azide group. Two peaks were observed having ( $x y$ ) co-ordinates ( $0 \cdot 125,0.000$ ) and ( $0 \cdot 125$, 0.075 ). It therefore appeared likely that the central nitrogen atom was located on the two-fold axis which passes through the origin and is parallel to the [a] axis. That the atoms of the azide group have $x$ co-ordinates approximately equal to 0.125 is indicated by the relative magnitudes of $\mathrm{F}_{400}$ - very small, $\mathrm{F}_{800}$ - very large, $\mathrm{F}_{1200}$ - very small; $\mathrm{F}_{h 00}$ being calculable by the equation

$$
\mathrm{F}_{h 00}=8 f_{\mathrm{sr}}+16 f_{\mathrm{N} \text { ceatre }} \cos 2 \pi h x+32 f_{\mathrm{N}} \cos 2 \pi h x
$$

Having thus established that the central nitrogen atom lies along the [a] axis, two possibilities arise : the peak observed at $(x y)$ co-ordinates ( $0.125,0.000$ ) may be due to an atom having $(x y z)$ co-ordinates $(0 \cdot 125,0 \cdot 000,0 \cdot 000)$ leading to the 16 positions $(0 \cdot 125,0 \cdot 000,0 \cdot 000),(-0 \cdot 125$, $0.000,0.000),(0.375,0.250,0.250),(0.125,0.250,0.250),(0.125,0.500,0.500),(-0.125,0.500$, $0.500)$, ( $0.375,0.750,0.750$ ), ( $0.125,0.750,0.750$ ), ( $0.625,0.000,0.500$ ), ( $0.375,0.000,0.500$ ), $(0.875,0.250,0.750),(0.625,0.250,0.750),(0.625,0.500,0.000),(0.375,0.500,0.000),(0.875$, $0.750,0.250),(0.625,0.750,0.250)$, or to an atom at $(0.375,0.000,0.000)$ leading to 16 positions as above. It will be readily seen that these two possibilities reduce to the same set of ( $x y$ ) co-ordinates.

Fig. 1.


The atomic co-ordinates $(0.125,0.000,0.000)$ for the central nitrogen are extremely improbable since the separation from the strontium atom at the origin would then be only 1.47 A., considerably less than the sum of the $\mathrm{Sr}^{2+}$ and $\mathrm{N}^{-}$radii. Attention was therefore directed to the other possibility in which the two nitrogen atoms have the approximate co-ordinates

$$
\begin{array}{lllll}
\mathrm{N}_{1} \text { centre } & 0.375 & 0 & 0 & \mathrm{~N}_{2} \\
0.375 & y z
\end{array}
$$

The three-dimensional Fourier line, parallel to the [a] axis, passing through the point $x=0$, $y=0$ showed a large maximum at $x=0.375$. A three-dimensional Fourier section parallel to the $a$-plane at a height $x=0.375$ led to $(y z)$ co-ordinates $(0.075,0.083)$ for the terminal nitrogen atom of the azide group. Further, three-dimensional Fourier lines and sections were then computed in order to refine these co-ordinates; during this process only a small number of those structure amplitudes towards which the strontium atoms contribute changed sign, but there was a general rearrangement in those for which the strontium contribution is zero. The final co-ordinates, derived from the Fourier section shown in Fig. 1 and the three-dimensional Fourier lines parallel to the $[a]$ axis, are :

$$
\begin{array}{lllllllllllll}
\text { Sr } & 0 & 0 & 0 & & N_{1} & 0.383 & 0 & 0 & N_{2} & 0.383 & 0.058 & 0.148
\end{array}
$$

The agreement between the observed and the calculated structure amplitudes (the average descrepancy is $27 \%$ ) is not of the same order as it is now customary to expect in structural determinations of organic substances; this may be attributed to the presence of the very heavy
strontium atom, which renders intensity measurements difficult; the contribution of the azide ion to the observed intensity is probably of the order of the experimental error for a high proportion of the planes.

Discussion of the Structure.-The equivalence of the two nitrogens at either end of the azide group-each is separated from the central nitrogen by 1.12 A .-shows that the structure is ionic. Fig. 2 represents the disposition of the nearest azide ions around any strontium ion. The

Fig. 2.

strontium ion has eight near neighbours; these can conveniently be classified in two sets of four. In the first set the strontium-nitrogen separation is 2.63 A ., and in the second set 2.77 A . Each azide ion is disposed between four strontium ions, two at a distance of 2.77 A . and two at 2.63 A .

Experimental. Strontium carbonate ( 5 g .) was dissolved in $2 \%$ hydrazoic acid ( 30 ml .) and the solution concentrated on a water-bath; on cooling, a mass of extremely small crystals was deposited. Larger crystals suitable for $X$-ray photography were obtained from the mother-liquor by slow evaporation in an Erlenmeyer flask.

This work forms part of a programme of fundamental research sponsored by the Ministry of Supply at the University of Birmingham; approval for publication has been granted by the Director General of Scientific Research and Development, Ministry of Supply.

The University, Birmingham 15.

